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ABSTRACT 

 

Hot-melt extrusion, an adaptable technology, has established its position in a wide 

spectrum of manufacturing operations like amorphous solid dispersions, immediate and controlled 

oral formulations, implants, and taste masked products. In recent years the industrial focus has 

shifted towards continuous manufacturing, thus melt extrusion is being explored for new 

applications. The aim of this research work was to investigate the novel applications of hot-melt 

extrusion by carrying out an in depth study to understand the interplay between the process and 

the product.  

The conventional techniques used for the preparation of ointments and nanostructured lipid 

carriers are multi-step and time consuming batch processes with low productivity. The low mixing 

efficiency coupled with high batch to batch variability makes these methods less industrial 

friendly. After optimization of screw configuration and process parameters, these formulations 

were successfully prepared using melt extrusion in a continuous fashion. The extruded ointment 

was similar to the conventionally prepared ointment with respect to flow characteristics, texture 

properties, and drug release profile, demonstrating the potential of hot-melt extrusion in 

preparation of topical semisolids. In an another study, extruded lidocaine loaded nanostructured 

lipid carriers were found to be stable for up to 60 days and the drug permeation from the carrier 

loaded gels was sustained as compared to control, thereby showing promising results for pain 

management in wounds. 
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In addition, investigating the impact of formulation composition on the product 

characteristics is of prime importance to understand melt extrusion process. With this goal, a 

response surface methodology was utilized to study influence of formulation variables on the 

extruded mucoadhesive films. It was observed that each independent variable influenced one or 

the other film characteristics either alone or in combination. It is only after such analysis that an 

optimized system with desired quality attributes could be formulated. The relationship between 

the process and formulation was elucidated and melt extrusion was found to be a viable approach 

for preparation of mucoadhesive films. 

In summary, these successes associated/coupled with the versatility of HME, defines the 

future potential for this paradigm-changing technology. 
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 Today most of the lead compounds, new chemical entities and marketed drugs have low 

intrinsic water solubility and high hydrophobicity. The reasons for such trend are difficult to 

understand and complex, however, some of the causes that contribute to this fact are use of high-

throughput screening modalities that often use non-aqueous media, the inclination towards high 

drug potency and the realization that hydrophobic interactions play a role for drug receptor 

binding. Thus, such compounds with poor water solubility present a major challenge during the 

drug development program, as dissolution of drug in the aqueous environment is the pre-requisite 

for absorption and distribution process (Dahan et al. 2016; Williams et al. 2013). The various 

strategies used for improving drug solubility include salt formation, pH adjustment, co-crystals, 

co-solvents, surfactants, cyclodextrins, particle size reduction, amorphous solid dispersions, and 

lipid based formulations (Göke et al. 2017; Wen, Jung, and Li 2015; Alam et al. 2012). 

 Among these techniques, amorphous solid dispersion is a major technique used to obtain 

good physical stability along with improved dissolution and bio-availability. Amorphous solid 

dispersion refers to products containing drug either in amorphous form or as molecularly dispersed 

drug while dispersions containing amorphous carriers are known as glasses. Solid solutions (carrier 

is crystalline) and glass solutions (carrier is amorphous) have drug molecularly dispersed in the 

carrier. With the FDA’s approval of several products in recent years (Baghel, Cathcart, and 

O’Reilly 2016; Sawicki et al. 2016), solid dispersions have become a prominent technique in the 

pharmaceutical industry for poorly water soluble drugs. 
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 HME technology was primarily developed for improving the solubility and bioavailability 

of poorly water soluble drugs by preparing and manufacturing amorphous solid dispersions. This 

technique involves pumping of raw materials along with the API in a heated barrel with rotating 

screws to obtain a product of uniform shape and size from the die. The screws used inside the 

barrel and their unique blending geometry leads to high shear localized mixing, thus providing the 

necessary distributive and dispersive action. At the narrow space between the intermeshing screw 

elements and the screws and barrel wall, continuous thinning, deformation, and elongation 

processes occur, facilitating the dissolution/dispersion of the drug molecule in the thermoplastic 

polymer blend. HME is regarded as a green technology as it can be used for materials with high 

viscosity without any solvents. The technique is also amenable to continuous manufacturing and 

hence is an industrially feasible platform technology. Other advantages include shorter processing 

times, fewer unit operations, and relatively easy to scale up. 

 Hot-melt extrusion is a very flexible technology and there are numerous modifications that 

could be performed with the instrument to suit the formulator’s needs. To start with, the feeding 

of the material could be performed in any of the multiple zones thus giving the formulator freedom 

with respect to the residence time of a specific material in the barrel. Some researchers have 

utilized this approach for thermolabile drugs, to expose such molecules to the high extrusion 

temperature for a shorter time. In addition, the screw configuration inside the barrel could be 

customized with a variety of designs and shear levels. One could have an intensive mixing zone to 

aid the conversion of drug from crystalline to amorphous form at high temperatures, in other cases 

the mixing zone could be tailored to retain the crystalline form of the drug. There are a lot of 

different screw elements and types, resulting into a specific mixing action. At the end of barrel is 

a die from which the material exits the barrel. The shape of the die could be spherical or flat to 
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obtain extrudates or films, respectively.  Also, a suitable downstream auxiliary equipment could 

be connected to a melt extruder for example, a pelletizer or a roller to further process the extruded 

material. These modifications have been utilized by scientists to develop effective and a wide array 

of dosage forms, making HME a robust technology to prepare solid dispersions (Thiry et al. 2016; 

Vo et al. 2017), taste masked formulations (Pimparade et al. 2015), transdermal (Crowley et al. 

2004), and topical (Bhagurkar et al. 2016; Repka and McGinity 2001) products. Furthermore, 

scientists are now exploring and investigating new applications of HME, so as to investigate this 

technique to its full potential. In recent years the increase in the number of patents and research 

articles showcases the wide spectrum of operations that could be performed using melt extrusion. 

The versatility and broad applicability has led to the emergence of HME as a technology leader in 

the pharmaceutical industry. 
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CHAPTER 2 

 

DEVELOPMENT OF AN OINTMENT FORMULATION USING                                          

HOT-MELT EXTRUSION TECHNOLOGY 
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2.1 INTRODUCTION 

 In the pharmaceutical industry, ointments are manufactured by melting oil and aqueous 

phases in two separate jacketed vessels with agitators for proper mixing. The two phases are 

transferred to the main ointment vessel through valves and pipes. The additional stirrers in the 

main vessel provide agitation (“Ointment Manufacturing Plant, Planetary Mixer, Tube Filling 

Machine,” 2017). During the entire course of operation, uniform mixture of all the components 

(base + drug) is crucial. Formation of agglomerates and non-uniform distribution of drug in the 

base are the potential challenges encountered owing to inefficient mixing and improper design of 

the mixer. The content is not uniformly mixed in the dead spots of the vessel. Thus, additional 

steps are required for recirculation to avoid wastage of product accumulated at the dead spots 

(Inspection Guides-Topical Drug Products (7/94)). 

 Hot-melt extrusion (HME) is an established technology in the plastic, rubber, and food 

industries. Since the past few decades, this technique is known as a successful continuous and 

solvent-free process. Recently, this technology is under investigation for application in 

pharmaceutical research and industry. In HME process, rotating screws drive the physical mixture 

(drug + inactive excipients) above the glass transition temperature (Tg) and/or above the melting 

temperature (Tm) based on the type of material used in the formulation. Thus, uniform mixing of 

active pharmaceutical ingredient and thermoplastic binders, polymers, or both is achieved (Patil et 

al., 2016). Thus, HME technology is used to formulate granules, pellets, immediate and controlled 

release tablets, and transdermal and transmucosal drug delivery systems (Repka et al., 2008, 2012; 
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Shah and Repka, 2013). HME, a proven manufacturing process, complies with the goal of US 

FDA process analytical technology (PAT) scheme for designing, analyzing, and controlling the 

manufacturing process (Maniruzzaman et al., 2012). It improves the quality and efficacy of the 

manufactured products, and hence, it is being explored for numerous pharmaceutical applications 

(Maniruzzaman et al., 2012). In this study, we investigated a new application of HME technology 

in the field of production of topical semi-solids. HME provides many advantages over 

conventional methods of ointment preparation, such as reduced processing time since melting of 

the ingredients and mixing is a one-step process. Moreover, no additional agitators and scrapers 

are required since mixing action is performed by the screw elements in the barrel. The screw 

elements also aid in particle size reduction. Additionally, the processing parameters could be 

customized to obtain products with desired characteristics. 

 Lidocaine (melting point: 68°C) was used as a model drug. It is crystalline in nature and 

has a pKa of 7.8 (Gröningsson et al., 1985). Lidocaine acts as a local anesthetic by blocking the 

fast voltage-gated sodium channels in the cell membrane of postsynaptic neurons, thus preventing 

depolarization and inhibiting the generation and propagation of nerve impulses (“Lidocaine,” 

2017). Lidocaine ointment is used as an anesthetic for accessible mucous membranes of the 

oropharynx, as an anesthetic lubricant for intubation, and for temporary pain relief associated with 

minor burns (“DailyMed- lidocaine ointment”). In this study, polyethylene glycol (PEG) was 

selected as the base for the ointment. The PEG bases are water soluble, washable, possess good 

spreadability, and are stable (“The Pharmaceutics and Compounding Laboratory”). The ointment 

base composition of 50% w/w PEG 3350 and 50% w/w PEG 400 was selected, since this 

combination is recommended in the USP. 
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The main objective of this study was to investigate the potential use of the HME process in the 

continuous manufacturing of topical semi-solid products. Therefore, the characteristics of the 

product prepared by HME were compared with that of a reference product prepared by the fusion 

method. 
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2.2 MATERIALS AND METHODS 

Materials 

Lidocaine USP was purchased from Spectrum Chemical Mfg. Corp. (New Brunswick NJ, USA). 

Polyethylene glycol 3350 was purchased from Electron Microscopy Sciences (Hatfield PA, USA); 

Carbowax® PEG 400 NF was purchased from Fischer Scientific (NJ, USA). All other chemicals 

used were of analytical grade. 

Preparation Methods 

Preparation of Ointment Formulation 

Conventional Ointment 

The conventional method of fusion was used for the preparation of ointment. Mixture of lidocaine, 

PEG 3350, and PEG 400 was melted on a hot plate by heating it to 75°C. The mixture was then 

removed from the hot plate and was stirred continuously until it congealed (“The Pharmaceutics 

and Compounding Laboratory,” n.d.). 

Hot-Melt Extruded Ointment 

A schematic illustration of preparation of ointment by HME is shown in Figure 2.1. Lidocaine 

base was blended with PEG 3350 at drug loading of 5% w/w. This binary mixture was fed into a 

co-rotating twin-screw extruder (11 mm Process 11™, Thermo Fischer Scientific, Karlsruhe, 

Germany) with a volumetric feeder. PEG 400 was introduced in the extruder barrel in zone 3, 

through an injection port using a peristaltic pump. The screw speed was set at 200 rpm, and the 
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barrel temperature was set to 75°C in the first five zones and 40°C in the remaining zones. A 

modified screw design as shown in Figure 2.2, with 3 mixing zones, was used for extrusion (Patil 

et al., 2014, 2015). The composition of the ointments is shown in Table 2.1. 

Table 2.1 Composition of the ointment formulations. 

       Method of preparation Lidocaine (% w/w) Ointment base composition        
(% w/w) 

1) Hot-melt extrusion  5% 50% PEG 400 + 50% PEG 3350 

2) Conventional  5% 50% PEG 400 + 50% PEG 3350 

 

Characterization of Raw Materials and Formulations 

Differential Scanning Calorimetry 

Physical characterization of lidocaine, PEG 3350 (melting range 53–57°C), and the ointment 

formulations was assessed using differential scanning calorimetry (DSC; Diamond DSC, Perkin 

Elmer) equipped with Pyris manager software. Samples of around 2–4 mg each were weighed and 

sealed in aluminum pans and analyzed at a heating rate of 10°C/min under an inert nitrogen 

atmosphere at a flow rate of 20 mL/min, over a temperature range of 30–150°C (Ahmed et al., 

2011). 

X-ray Diffraction 

X-ray diffractograms were acquired for ointment formulations prepared using HME and 

conventional techniques. The studies were performed using SmartLab3 X-ray diffraction system 

(Rigaku, Japan) equipped with HyPix-400 2-D detector and SmartLab Studio II® software. 

Samples were filled into a glass sample holder and exposed to CuKα radiation (40 kV × 4 mA) to 

collect diffractogram over 2θ range of 4 to 40° with an increment of 0.0114 at 1 s per step. 
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pH Measurement 

Weighed amount of ointment was dissolved in water so as to get final ointment concentrations of 

1% w/v, 5% w/v, and 10% w/v. pH of these solutions was measured using the Mettler Toledo 

InLab®Micro pH probe (Electrolyte 3 mol/L KCl). 

Uniformity of Drug Content 

Predetermined amount of ointment formulation was taken from three different regions of an 

ointment jar and was dissolved in methanol. The samples were then subjected to centrifugal 

filtration. The supernatant was collected and directly injected into high performance liquid 

chromatography (HPLC) to measure the drug content. 

Method of Analysis 

The lidocaine content was analyzed using Waters HPLC-UV (Waters Corp) system. A Luna C18 

Phenomenex column with dimensions of 250 × 4.6 mm (5 µ) was used for this study. The mobile 

phase used was methanol and 25 mM dibasic potassium phosphate (80:20% v/v) and the flow rate 

was adjusted to 1 mL/min. The injection volume was 20 µL and detection wavelength was 220 nm. 

The retention time of lidocaine was found to be 5.9 min. A calibration curve (R2 = 0.999) was 

plotted after measuring the peak areas of the standard solutions of lidocaine. Drug concentration 

in the samples was determined by measuring the peak area of sample and comparing it with the 

peak area of the calibration curve (Repka et al., 2005). 

Texture Profile Analysis of Ointment Formulation 

Texture Analyzer model TA.XT2i (Texture Technologies Corp. /Stable Micro Systems) along with 

a 1-in. diameter (TA-3), acrylic, cylindrical probe, and a soft matter kit (TA-275) was used for the 
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determination of texture properties. The various set parameters for texture analysis are shown in 

Table 2.2. 

Soft matter fixture was filled with the product, and it was placed below the texture analyzer’s 

probe. The test was performed by lowering the probe at the pre-test speed to the product surface. 

The probe produced an additional deformation of 1 mm of the sample at the test speed of 0.50 mm/s 

after coming in contact with the surface and sensing the trigger force. The probe then withdrew 

from the sample at the speed of 5.00 mm/s. The same procedure was repeated for other samples 

after cleaning the probe and leveling the surface of the sample (Tai et al., 2014). 

 

Table 2.2 The various set parameters for texture analysis. 

Parameter 

 

Set value 

Test mode Compression 

Pre-test speed 0.50 mm/sec 

Test speed 0.50 mm/sec 

Post-test speed 5.00 mm/sec 

Target mode Distance 

Distance 1 mm 

Trigger type Auto 

Trigger force 5.0 g 

Hold time 5.00 sec 

Advanced options Off 

Temperature Room temperature 
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Rheological Characterization 

Rheological measurements were performed using TA instrument HR-2 rheometer. All 

experiments were conducted at room temperature (22°C) and using 25 mm parallel plate geometry. 

Adhesive backed sand papers (grit # 600 provided by Allied High Tech Products Inc.) were used 

for upper and lower plate in order to reduce slippage at the sample-plate interface. For each test, 

approximately 400 mg of sample was placed on the lower plate followed by slowly adjusting the 

upper plate to reach to a gap of 550 µm. After trimming off excess sample, the gap was set at 

500 µm for rheological testing. Rheological characterization included four steps performed in 

sequence for each sample. Time sweep (at strain, γ0, of 0.1% and frequency, ω, of 1 Hz) was 

conducted for 10 min to allow the sample to relax the stress the sample was subjected to during 

loading. It was followed by strain sweep test (γ0 = 0.05–50%, ω = 1 Hz). Time sweep test for 

10 min was then performed prior to steady-shear test by varying the shear rate from 0.002 to 

100 s−1. Rheological experiments were conducted in triplicate for each sample. 

In Vitro Release Testing 

Vertical Franz-type diffusion apparatus (Logan Instruments) maintained at 32 ± 1°C was used to 

study drug release profile across synthetic membranes (cuprophane membrane and silicone 

membrane thickness = 0.005”). Two hundred milligrams of the ointment formulation was applied 

to the membrane. The receiver compartment consisted of 5 mL phosphate buffer, pH 7.4. The 

active diffusion area of the membrane was 0.50 cm2. During the course of the study, 0.5 mL of 

sample was collected from the receiver compartment at various time points and was subsequently 

replaced with fresh buffer. The collected samples were suitably diluted and analyzed using an 

HPLC-UV system (Waters Corp)  (Brown et al., 2012; Food and Administration, 1997; 

Nallagundla et al., 2014; Olejnik et al., 2012; Shah et al., 1989, 1999; Thakker and Chern, 2003).
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2.3 RESULTS AND DISCUSSION 

Preparation of Ointment Formulation Using HME 

Hot-melt extrusion technology is a continuous process of pumping raw materials at high 

temperature and pressure resulting in a product of uniform shape and density (Maniruzzaman et 

al., 2012). In hot-melt extrusion technology, various process parameters such as feed rate, screw 

design, screw speed, barrel temperature, and zone of liquid addition have a significant effect on 

the quality of the final dosage form. All of these parameters were optimized after intensive 

preliminary studies (Ahmed et al., 2011; Patil et al., 2015). The screw design was modified as 

shown in Figure 2.3, to obtain a uniform product. PEG 3350 and lidocaine (5% w/w) were fed into 

the barrel via a volumetric feeder. PEG 400, heated equivalent to the extrusion temperature, was 

injected into the barrel through zone 3 using a peristaltic pump equipped with an injection port. 

The temperature from zone 2 to zone 5 was set to 75°C to ensure complete melting of all the solids 

before reaching the zone of liquid addition. The first mixing zone helped in the proper mixing of 

the drug and PEG 3350. After the addition of PEG 400 in zone 3, the mixing zone 2 provided 

intense mixing action to ensure that all the components are uniformly mixed. The temperature 

from zone 6 to zone 8 was set to 40°C. The third mixing zone prevented the formation of 

agglomerates. The screw speed of 200 rpm was found to be optimum for this ointment. During the 

entire run, the torque values were found to be lower than 2%. The extruded mass gradually cooled 

down resulting in the final product.All the formulations were found to be smooth and devoid of 

any grittiness indicating uniform mixing of contents
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Figure 2.1 Schematic representation of preparation of ointment by hot-melt extrusion 
technology. 
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Figure 2.2 Modified screw design used for the preparation of an ointment. 

Differential Scanning Calorimetry 

The DSC thermogram shows that pure lidocaine base was characterized by a single endotherm 

peak representing its melting point at 69°C (Figure 2.3). PEG 3350 is a semi-crystalline polymer 

and was found to melt in the range of 60–70°C. The third component in the formulated ointment 

is PEG 400, which is a liquid. The DSC thermogram of the placebo ointment (ointment without 

the drug) shows two peaks, in the temperature range of 40–55°C (Figure 2.3). The same two peaks 

are observed in the formulations prepared by HME and conventional process. The absence of drug 

peak in these two formulations indicates that the crystal morphology of lidocaine is either 
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converted to amorphous nature or it has been solubilized during HME and conventional process.

 

Figure 2.3 DSC thermogram of lidocaine, PEG 3350 and different ointment formulations. 

 

X-ray Diffraction 

The X-ray diffraction patterns of lidocaine API, placebo (ointment without the drug), HME, and 

conventional formulations are depicted in Figure 2.4. Lidocaine API is a highly crystalline solid 

and exhibited strong peaks at 2θ 10°, 12.5°, and 25°. However, diffractograms for both HME and 

conventional formulations lacked crystalline peaks characteristic for lidocaine and were identical 

to diffractogram of blank formulation (Figure 2.4). This study also suggests that the drug is either 

present in the amorphous form or has been completely solubilized in the ointment base. To further 

investigate the nature of drug in the formulation, the solubility of drug in PEG 400 was determined. 
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Figure 2.4 XRD data for the drug, conventional and HME formulation. 

Solubility 

In this study, the drug load in the formulation is 5% w/w and the concentration of PEG 400 is 

50% w/w. Solubility studies revealed that lidocaine is highly soluble in PEG 400 (>250 mg/mL), 

which is many-fold higher than the concentration of drug in the formulation. Therefore, it is most 

likely that the drug exists in soluble form in the PEG ointment base. 

Uniformity of Drug Content 

As mentioned earlier, uniform mixing of the API with ointment base is one of the challenging 

tasks in manufacturing of topical semi-solids. Uniformity of drug content indicates the efficiency 

of mixing process. In this study, we found that the drug content in the hot-melt extruded ointment 

was 96.56 ± 5.21% and in the conventional ointment was 99.97 ± 4.36%. It is evident from the 

results that the modified screw configuration used in this study was effective resulting in a product 

with uniform drug content. 
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Formulation pH 

pH measurement of non aqueous semi-solid bases is a challenge due to lack of compendial 

recommendations (Inoue et al., 2013; Ueda et al., 2009). Therefore, a method was developed to 

measure the pH of the ointment. The pH values (at 22°C) for the hot-melt extruded and the 

conventional formulation were found to be similar, 9.56 ± 0.19 and 9.31 ± 0.25, respectively. Also, 

it was found that the pH did not change significantly with incorporation of different amounts of 

ointment (1% w/v, 5% w/v, and 10% w/v) in water indicating absence of any acidic or alkaline 

impurities present in the excipients. 

Firmness and Work of Adhesion of the Ointment 

Texture parameters such as firmness and work of adhesion of semi-solids are important for product 

performance as well as for consumer acceptance. Firmness relates to the viscosity of the product 

and is denoted by the maximum value of force in the plot of force versus time (Figure 2.5). The 

work of adhesion relates to spreadability, and it is the area under the negative portion of the curve 

delimited by anchor 1 and 2 (Figure 2.5). The PEG polymers have a unique property as they add 

a silky feeling without greasiness to the semi-solid product. The higher firmness and work of 

adhesion values as shown in Table 2.3 indicate that the formulation is viscous and adhesive and 

thus it finds application as a local anesthetic for the mucous membranes. 
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Figure 2.5 Representative picture of data of texture analysis of lidocaine ointments. 

 

Table 2.3 Firmness and work of adhesion values for the formulations (n=3, ± S.D.) 

 

 

Rheology 

Dynamic oscillatory shear and shear flow are common rheological characterization protocol to 

characterize the stiffness, yield stress, and flow properties of viscoelastic materials, e.g., ointments, 

creams, and lotions (Krishnaiah et al., 2014). Figure 2.6a displays storage modulus, G′, and loss 

modulus, G″, as a function of strain amplitude. For low-strain values, the storage modulus is an 

order of magnitude higher than loss modulus in small strain amplitude which is an indication of a 

soft solid-like behavior. However, with increasing strain, G′ starts to decrease, and beyond a strain 

Formulation Firmness (g) Work of adhesion (g sec) 

HME  2271.71 ± 5.30 
 

763.73 ± 10.50 

Conventional 2324.81 ± 8.47 
 

762.37 ± 32.14 
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amplitude (γ0) of greater than 10%, a crossover between G′ and G″ has been observed. Further, 

increasing strain resulted in G″ become higher than G′, indicating a more fluid-like behavior. 

Rheological results can be used to determine the yield stress of the samples (Adeyeye et al., 2002; 

“TA Instruments,”). The yield stress is defined as the stress required to initiate flow in the 

ointments, and it is related to the significant change in microstructure of the sample. To determine 

yield stress, elastic modulus for different samples was plotted as a function of shear stress in   

Figure 2.6b. The onset point, the stress in which elastic modulus (G′) declines in a G′ versus shear 

stress logarithmic plot, can be determined by applying tangents to the linear and nonlinear regime 

of the curve. The point where two tangents cross is estimated as the yield stress (σY) of a material. 

The yield stress for the hot-melt extruded and conventional formulation was found to be 

503 ± 80 Pa and 570 ± 70 Pa, respectively. It indicates that the HME and conventional formulations 

have relatively similar flowing properties. The effect of shear rate on material viscosity has been 

displayed in Figure 2.7. HME and conventional formulations have very similar viscosity profile. 

As it is observed, apart from the very low shear rate (less than 0.01), viscosity decrease with a 

constant slip for all samples with increasing shear rate. This type of trend is essential in ointments 

during their use performance to enhance better spreading of a material. The HME and conventional 

formulations exhibited similar stiffness (elastic modulus, G′) for a similar concentration of 

polymers. 
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Figure 2.6 Rheological characterization: a) shear modulus (Pa) versus strain (%) b) shear modulus, 

G’ (Pa) versus stress (Pa). 

 

Figure 2.7 Plot of viscosity (Pa.s) versus shear rate (1/s). 
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In Vitro Release Testing 

The use of Franz diffusion cell for in vitro release testing (IVRT) is a simple and reproducible 

method to evaluate the drug release profile from topical products. However, choosing an 

appropriate synthetic membrane is often deemed as the most challenging task in IVRT. In the 

present study, cuprophane membrane was chosen initially for determination of release profile. 

However, cuprophane being porous and hydrophilic in nature led to penetration of receptor media 

into the donor compartment owing to osmotic drive. Therefore, a non-porous hydrophobic silicone 

membrane was selected. To validate this membrane, ointments with different drug loads 

(2.5% w/w, 5% w/w, and 10% w/w, prepared by the fusion method) were subjected to IVRT. The 

rate of drug release from the ointment increased with the drug load as shown in Figure 2.8, 

indicating that the membrane was not controlling the rate of drug release. The release profile of 

the hot-melt extruded and the conventional ointment across silicone membrane was fit to Higuchi 

kinetic profile, and K-value was calculated. The release rate constant (hot-melt extruded 

ointment, K = 405 ± 41.59 and conventional ointment, K = 453.01 ± 37.40) was not significantly 

different between the two products (Figure 2.9). 
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Figure 2.8 Plot of cumulative amount released (ug/cm2) vs √Time for membrane validation 
studies. 

 

 

Figure 2.9 The in-vitro drug release profile of HME and conventional formulation. 
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2.4 CONCLUSION 

The use of HME technology for development of a topical semi-solid product, reported in this study, 

is the first of its kind. Selection of suitable screw configuration ensures proper mixing of all the 

components of the formulation in HME. In the present study, the product prepared by HME and 

conventional processing was similar in terms of rheological properties, drug release profile, and 

texture characteristics, indicating the efficiency of HME technology to result in a semi-solid 

product which is similar in quality as that of the reference product. HME technology also provides 

many advantages over the conventional method of ointment preparation such as minimal 

processing steps (since melting and mixing is a one-step process), cost effectiveness, uniform 

product (owing to dispersive and distributive mixing), and shorter processing times. In addition, 

the different process parameters of HME technology such as feed rate, screw speed, and barrel 

temperature could be modified to impart desired characteristics to the product.
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CHAPTER 3 

 

A NOVEL APPROACH FOR THE DEVELOPMENT OF A NANOSTRUCTURED LIPID 

CARRIER FORMULATION BY HOT-MELT EXTRUSION TECHNOLOGY
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3.1 INTRODUCTION 

 Nanostructured lipid carriers (NLCs) are colloidal carriers with complex architecture, 

which confers them higher stability and drug loading capacity as compared to solid lipid 

nanoparticles. These carriers are composed of a solid lipid and an oil phase that is organized in 

nanocompartments inside the solid lipid matrix (Fang et al. 2008). According to some reports, the 

drug in the NLC remains in the liquid lipid surrounded by the solid lipid. This arrangement gives 

the drug some degree of mobility, offers stability to some extent even when the solid lipid 

undergoes polymorphic change (Pathak and Nagarsenker 2009). NLCs have numerous 

applications for drug delivery via oral, pulmonary, dermal and ocular route (Kovacevic, Savic et 

al. 2011, Beloqui, Solinis et al. 2016). 

 Microemulsification, solvent displacement and high pressure homogenization are some of 

the currently used methods for the preparation of NLCs (Pardeike, Hommoss et al. 2009). 

However, all of these methods are poorly energy efficient and involves multi-step processing.  

Additionally, in case of methods like microemulsification technique, there is potential for dilution 

of particle dispersion requiring to take the product through additional step to remove water 

(Montenegro, Lai et al. 2016). Methods like solvent displacement involves the use of organic 

solvent, which has to be removed from the product to ensure safety of the product. Although the 

high pressure homogenization (HPH) method is the preferred method for NLC preparation, this 

method involves the preparation of the lipid and the aqueous phase, melting the lipid phase, 

dispersing/dissolving the drug in the lipid phase, and finally mixing the two phases together to 
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prepare the pre-emulsion (Patil, Feng et al. 2015). The prepared pre-emulsion is further subjected 

to size reduction. Thus HPH process is associated with long processing time and frequent failures 

due to batch to batch variations (Puglia and Bonina 2012). Overall, the conventional methods are 

less industry friendly. Thus it would be required to develop an alternative method for NLC 

preparation, which will overcome most of the limitations of the conventional technologies. 

 Hot-melt extrusion (HME), involves pumping of raw materials (API and excipients) into a 

heated barrel at high pressure, so as to get a uniform product through a die. The active compound 

is usually embedded in a carrier, which comprises of a meltable substance/s and/or functional 

excipients. The chemical and physical properties of the carrier govern the release of drug from the 

formulation (Crowley, Zhang et al. 2007). The extensive industrial adaptability of HME, has 

established its position in the wide spectrum of manufacturing operations and pharmaceutical 

research (Maniruzzaman, Boateng et al. 2012). Shorter and efficient times to final product, non-

solvent and a continuous process are some additional advantages of this technique (Repka, Battu 

et al. 2007, Douroumis 2012). This technique gained a lot of importance in the recent decade after 

the Food and Drug Administration (FDA) encouraged the use of continuous manufacturing 

processes (Langley, DiNunzio et al. 2013, Melocchi, Loreti et al. 2015). The hot-melt extruded 

materials have been used to prepare dosage forms like tablets, granules, transdermal systems and 

topical products (Bhagurkar, Angamuthu et al. 2016). 

 The main aim of this study was to investigate the feasibility of hot-melt extrusion 

technology in the preparation of NLCs and while doing so the various process parameters were 

optimized and the obtained product was characterized for various quality control attributes. 

Further, to investigate the applicability of the developed process, the NLC topical gel formulation 

incorporated with lidocaine, a local anesthetic was prepared. Lidocaine finds its application in the 
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pain management of wounds caused by burns and surgeries.  Lidocaine inhibits the propagation of 

nerve impulses by binding to the voltage gated sodium channels, and thus it prevents the influx of 

sodium ions (Cummins 2007). There are therapeutic topical products available for the topical 

delivery of lidocaine. However, the conventional topical formulations are poorly efficient in 

retarding the clearance of drug from the affected region. It was hypothesized that the NLC 

formulation incorporated with lidocaine will lead to localization of the drug delivery system and 

controlled delivery of drug to the affected region for a prolonged therapeutic effect. 
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3.2 MATERIALS AND METHODS 

Materials 

Labrafac™ lipophile WL 1349 was kindly gifted by Gattefossé (Saint Priest, France). Cetyl esters 

wax NF, propylene glycol USP and carbomer 940 NF were purchased from PCCA (Houston, 

Texas, USA). Lidocaine USP was purchased from Spectrum Chemical Mfg. Corp. (New 

Brunswick NJ, USA). Tween™ 80 and potassium dihydrogen phosphate was purchased from 

Fischer Scientific (NJ, USA). All other chemicals and solvents (acetonitrile, methanol) used were 

of HPLC grade. DI water was used throughout the study. 

Methods 

Preparation of NLC Formulation 

In this study, an HME technique was used to prepare the NLC. The preparation involved two main 

steps: First, formation of a pre-emulsion by pumping all the raw materials into the barrel and 

second, was size reduction of the pre-emulsion to obtain the nanocarriers.  Thus NLC were 

prepared by making appropriate modification with screw design and using suitable downstream 

processing equipment. The composition of the NLC formulation is as shown in Table 3.1 

(Khurana, Jain et al. 2013). The lipid components used in the formulation were reported to be safe, 

biocompatible and biodegradable. Extrusion was carried out on a 11 mm co-rotating twin screw 

extruder (11 mm Process 11™, ThermoFisher Scientific, Karlsruhe, Germany). Cetyl palmitate 

was passed through a sieve for size reduction, so as to improve its flowability. The drug was then
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uniformly mixed with cetyl palmitate and introduced in the barrel using a volumetric feeder. 

Labrafac lipophile, heated to 75°C, was injected in zone 2 of the barrel using a peristaltic pump. 

A solution of polysorbate 80, propylene glycol and water was prepared and heated to 75°C. This 

solution was injected in zone 4 of the barrel using another peristaltic pump. The schematic 

representation of preparation of NLC by HME is shown in Figure 3.1. The feeding rates for the 

volumetric feeder and the peristaltic pumps were optimized. The screw configuration as shown in 

Figure 3.2, with a barrel temperature of 75°C was used for the extrusion process. Three screw 

speeds of 100, 200 and 300 rpm were used in the study to determine their influence on the product. 

The coarse-emulsion obtained was subjected to probe sonication (Vibra cell, Sonics and Material, 

Inc., Newtown, CT, USA) with amplitude of 70%, to obtain the NLC. The sonication time was 

varied from 1 to 3 min to investigate the influence of sonication time on the particle size of NLC.  

Table 3.1 The composition of the NLC formulation. 

Material Amount 

Lidocaine 11.3 mg (1% w/w) 

Cetyl palmitate 65 mg 

Labrafac™ lipophile 35 mg 

Polysorbate 80 0.2 mL 

Propylene glycol 0.1 mL 

Carbopol 940 5 mg 

Water 0.7 ml 
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Figure 3.1 Schematic representation of preparation of NLC by conjugation of hot-melt extrusion 

and probe sonication. Adapted from “Continuous Production of Fenofibrate Solid Lipid 

Nanoparticles by Hot-Melt Extrusion Technology: A Systematic Study Based on a Quality by 

Design Approach,” by Hemlata Patil et al. The AAPS Journal 17, no. 1 (January 2015): 194–205. 

 

Characterization of the NLC 

Particle Size, Polydispersity Index and Zeta Potential Analysis 

The particle size, polydispersity index (PDI) and zeta potential of the NLC formulations were 

analyzed using a Malvern Nanosizer ZS (Nano ZS, Malvern Instruments, UK). The formulations 

were suitably diluted with distilled water prior to measurements. All the measurements were 

carried out at a scattering angle of 90° at 25°C. 
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Entrapment Efficiency 

The entrapment efficiency was determined by calculating the entrapped drug after removal of un-

entrapped drug using a Amicon centrifugal filter (MWCO 100 KD) units centrifuged at             

13,200 rpm for 40 min. The filtrate was diluted appropriately with methanol and analyzed using a 

suitable HPLC method. The following formula was used to calculate the % entrapment efficiency: 

 

% Entrapment efficiency =         Amount of lidocaine entrapped                    X 100 

          Amount of lidocaine added in the formulation 

 

Transmission Electron Microscopy (TEM) 

TEM was used to observe the morphology of the NLC dispersions. The nanoparticles suspension 

was stained with 0.5% phosphotungstic acid and the stained grid was air dried and examined under 

Zeiss Auriga 40. 

Formulation of Topical Gel of NLC 

The fact that NLCs remain stable in hydrogel has been studied by  Yang  et  al (Yang, Corona et 

al. 2014). In this project, the NLC were loaded in a hydrogel vehicle for convenient topical 

application. Measured quantity of carbopol 940 was slowly added to the NLC dispersion with 

stirring. The carbopol was allowed to swell overnight with intermittent stirring. Later, 

triethanolamine was added dropwise to the mixture, so as to raise the pH to 7-7.5. A gel without 

lipids, having composition as shown in Table 3.1, was prepared, to serve as control.  
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In-vitro Drug Release Study 

The amount of drug released from the lidocaine NLC gel was studied using a vertical Franz 

diffusion apparatus (Logan Instruments, NJ, USA). The dialysis membrane (MWCO 10 kDa) was 

mounted between the donor and receiver compartment and the active diffusion area was 0.64 cm2. 

The receptor compartment consisted of 5 mL phosphate buffer, pH 7.4. Gel formulations 

equivalent to 2 mg of lidocaine was applied on the membrane and 0.5 mL of samples were 

withdrawn at various time intervals. The samples were further analyzed using a HPLC-UV system. 

Ex Vivo Permeation Studies 

The permeation of lidocaine from the NLC gel was evaluated using abdominal porcine skin 

epidermis. Before using the epidermis, it was thawed at room temperature for 1h and was then 

placed on the vertical Franz diffusion cells with the stratum corneum (SC) facing the donor side. 

The integrity of the epidermis was confirmed by measuring the resistance at a frequency of 10 Hz 

and voltage of 100 mV. Only the epidermis having resistance values greater than 20 KΩ/cm2 were 

used in the study (Maurya and Murthy 2014). The receptor compartment consisted of 5 mL 

phosphate buffer, pH 7.4. The experiment was carried out at 37°C. Gel formulations equivalent to 

2 mg of lidocaine was applied on the epidermis and 0.5 mL of samples were withdrawn at 

predetermined time points and analyzed by an HPLC- UV system.  

Mechanistic Studies 

Drug Retention in the Cutaneous Tissue 

Abdominal porcine skin was used for this study. The hairs were removed using a trimmer and then 

the excess fat from the dermal side was removed. The skin was soaked in phosphate buffer for 1 h 

and later, it was allowed to air dry. The stratum corneum was removed from rest of the layers of 
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the skin by tape stripping using Transpore® adhesive tape (3M, St. Paul, MN, USA). The skin 

with intact stratum corneum was used as control. The vertical Franz diffusion cells were used to 

perform the studies (Logan Instruments, NJ, USA). The receptor media consisted of 5 mL of 

phosphate buffer of pH 7.4. The formulations were allowed to stay for 24 h, after which the skin 

was rinsed with water and dried. Later, the drug was extracted into acetonitrile using a suitable 

method and analyzed with HPLC. 

Analytical Method 

The amount of lidocaine base was determined using a HPLC-UV system (Waters Corp). A Luna 

C18 Phenomenex column with dimensions of 250×4.6 mm (5 µ) was used. The mobile phase 

consisted of a mixture of (14/86 v/v) of acetonitrile and potassium dihydrogen phosphate 0.05 M 

(pH adjusted to 4.0). Flow rate of 1.2 mL/min and detection wavelength of 216 nm was used for 

analysis (Murthy, Sammeta et al. 2010).
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3.3 RESULTS AND DISCUSSION 

Preparation of Nanostructured Lipid Carrier 

The screw extruder mainly comprises of three parts: a conveying system, which helps in the 

transport and efficient mixing, a die system at the end of the barrel, and downstream auxiliary 

equipment which can serve the purpose of cutting or collecting the product for further processing. 

The screw configuration plays a vital role in HME and it affects the characteristics of final product 

to a great extent (Shah, Maddineni et al. 2013, Alsulays, Park et al. 2015, Morott, Pimparade et al. 

2015). The screw configuration (Figure 3.2) was devised by taking into consideration the zones of 

material addition. The 1st mixing zone was placed with the aim of mixing the melted lipid and drug 

with Labrafac lipophile. The intensive 2nd mixing zone ensured the efficient mixing of the oil and 

water phase and facilitated the formation of pre-emulsion. The pre-emulsion from the die was 

collected in a beaker which was connected to a probe sonicator. The parameters for the probe 

sonication were optimized and the NLCs were successfully obtained after sonication. During the 

entire run, the torque values were found to be lower than 10%.
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Figure 3.2 Modified screw configuration used for extrusion. 

Characterization of the Prepared NLC 

The particle size, PDI and zeta potential for the various formulations is as shown in Table 3.2. 

Usually with longer sonication time, it is reasonable to expect decrease in the size of the particles 

(Das, Ng et al. 2012). However, it can be seen from the particle size data on day 0, that the different 

screw speeds and the sonication times did not significantly influence the particle size of the NLC. 

But analyzing the particle size on day 60 revealed that the particle size for the formulations 

prepared with 200 and 300 rpm of screw speed, increased in contrast to 100 rpm. One of the reasons 

for the increase in the particle size at 200 and 300 rpm is likely due to the higher shear in the 

system at higher screw speeds in contrast to 100 rpm screw speeds. In general, with higher screw 

speeds, the residence time within the barrel decreases, but the shear in the system increases, which 

is likely to affect the quality of the coarse emulsion prepared, thus influencing the stability of the 

NLCs. The reason for higher particle size for formulation F-7 is unknown at this point. Moreover, 
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it can be observed that on day 60, the PDI for the formulations with 100 rpm did remain consistent 

as compared to other manufacturing screw speeds indicating the formation of a thermodynamically 

stable dispersion of uniformly sized nanocarriers (Ghate, Lewis et al. 2016). No specific 

correlation was found between zeta potential and sonication time or screw speed. Thus it can be 

concluded that in this case, the screw speed of 100 rpm was found to be optimum for the NLC, 

with the sonication time having little influence over the size. Hence the formulations with 100 rpm 

screw speed (F-1, F-2, and F-3) were selected for further studies. 

Entrapment Efficiency and pH 

The % entrapment efficiency for the formulations is as shown in Table 3.3. The lower values for   

% entrapment for the formulations is mainly due to partitioning of the drug between the oil and 

aqueous phase. Since lidocaine has fairly good solubility in the surfactants and solubilizers used 

(more than 25 mg/mL of lidocaine was soluble in the aqueous phase, which is about 2-folds more 

than the amount of drug added in the formulation), it is pulled out from the oil phase leading to 

low entrapment values (Joshi and Patravale 2008). Also, it was observed that as the sonication 

time increased, the % entrapment efficiency decreased. The reason for this might be the leakage 

of the drug from the lipid due expansion of nanolipid structures due to increase in the temperature, 

in situ. The pH of the NLC loaded with lidocaine is shown in Table 3.3. The pH was found to be 

within 4.0-8.0, which is the acceptable range for topical application.
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Table 3.2 The particle size, PDI and zeta potential of the NLCs prepared using hot-melt extrusion. 

Formulation 

(Code) 

Processing 

conditions 

Particle size (nm) PDI Zeta potential (mV) 

 Screw 

speed 

(rpm) 

Sonication 

time 

(min) 

Day 0 Day 60 Day 0 Day 60 Day 0 Day 60 

F-1* 100 1 12.97 ± 0.18 18.93 ± 0.16 0.31 ± 0.01 0.33 ± 0.01 -12.53 ± 5.37 

 

-12.53 ± 5.37 

 

 

-14 ± 3.89 

F-2* 100 2 13.23 ± 0.81 16.28 ± 0.23 0.22 ± 0.02 0.23 ± 0.01 -16.3 ± 7.17 -15 ± 5.18 

F-3* 100 3 23.76 ± 9.26 28.44 ± 4.82 0.24 ± 0.09 0.25 ± 0.03 -19.7 ± 3.80 -16.5 ± 6.58 

 

5.18 

6.58 

3.4 

3.6 

3.75 

3.78 

4.11 

5.24 

 

F-4 200 1 14.44 ± 0.19 38.39 ± 0.24 0.19 ± 0.03 0.22 ± 0.01 -20.4 ± 7.73 -12.8 ± 3.4 

F-5 200 2 13.49 ± 0.11 39.45 ± 0.07 0.12 ± 0.01 0.20 ± 0.01 -10.7 ± 12.1 -16.1 ± 3.6 

F-6 200 3 12.86 ± 0.02 38.59 ± 0.21 0.10 ± 0.01 0.22 ± 0.01 -17.5 ± 21.6 -14.5 ± 3.75 

F-7 300 1 62.36 ± 0.41 80.72 ± 1.60 0.67 ± 0.00 0.35 ± 0.05 -22.9 ± 4.75 -15.3 ± 3.78 

F-8 300 2 13.52 ± 0.09 42.03 ± 0.31 0.13 ± 0.00 0.20 ± 0.01 -4.67 ± 10.7 -11.7 ± 4.11 

F-9 300 3 12.50 ± 0.01 39.36 ± 0.32 0.09 ± 0.01 0.23 ± 0.01 -5.74 ± 5.87 -10.9 ± 5.24 

 

* Formulations selected for further studies.
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Table 3.3 The % entrapment efficiency and pH for the NLCs. 

Formulation % entrapment efficiency pH 

F-1 73.89 ± 1.39 6.96 ± 0.00 

F-2 70.51 ± 0.97 6.14 ± 0.04 

F-3 39.39  ± 1.51 6.68 ± 0.02 

 

Transmission Electron Microscopy 

 Scanning transmission electron microscopy (STEM) studies were performed so as to understand 

the shape and morphology of the NLCs prepared at 100 rpm screw speed and sonicated for   2 min 

(F-2). The images were taken in freshly prepared and aged (2 months) formulations. It can be 

observed as shown in Figure 3.3 (after 2 months of storage), the NLCs were found to be spherical. 

The particle size observed by TEM image, was found to be in agreement with the data obtained 

from the dynamic light scattering. 
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Figure 3.3 STEM image for F-2 NLC formulation 

In Vitro Drug Release 

The release profile of lidocaine from the lidocaine loaded NLC gel and gel without lipids is shown 

in Figure 3.4a and 3.4b. It can be observed that the rate of drug release from the NLC loaded gel 

was lower as compared to the gel without lipids indicating that lipid carriers play a predominant 

role in sustaining the drug release. The drug release data was fitted with Higuchi model (Figure 

3.4a). The release rate constant (K) for F-2 formulation was 42.06, while it was 363.51, for the gel 

without lipids. However, there was no significant difference between the drug release rate between 

the three different NLC-loaded gel formulations. 
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Figure 3.4a The in-vitro drug release profile for NLC loaded gel and gel without lipids (n=3). 

 

        

Figure 3.4b The in-vitro drug release profile for NLC loaded gel (n=3). 
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Ex Vivo Permeation Studies 

The cumulative amount of drug permeated at the end of 36 h for F-1, F-2 and F-3 formulations 

was found to be 2.19 ± 1.11 µg/cm2, 4.32 ± 1.05 µg/cm2, and 8.44 ± 2.60 µg/cm2 (Figure 3.5a and 

3.5b), respectively. On the other hand, 23.79 ± 0.67 µg/cm2 of lidocaine permeated through the 

epidermis from the gel without lipids. It is evident from the data that there was a significant 

difference in the amount of drug permeated across the epidermis from the gel devoid of NLCs and 

the gel loaded with NLCs. It clearly shows that the the controlled release of drug from the NLCs 

predominates over the inherent rate of drug permeation across the intact stratum corneum from the 

gel.  However, this study did not demonstrate the ability of NLCs to localize in the tissue and 

control the release of drug in a skin that is devoid of stratum corneum barrier, such as skin ulcers 

and wounds. Therefore, to investigate the workability of NLC in wounds, mechanistic studies were 

performed using skin without SC.  
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Figure 3.5a The ex-vivo drug permeation profile for the NLC loaded gels and gel without lipids 

(n-3). 

 

Figure 3.5b The ex-vivo drug permeation profile for the NLC loaded gels (n=3). 
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Mechanistic Studies 

The barrier function of the skin is highly disrupted in cases when skin suffers burns, cuts and other 

mechanical injuries. Therefore, regional delivery of antibiotics, pain management drugs and 

wound healing agents, to treat such wounds and injuries would become highly challenging owing 

to poor retainability of drug in and rapid clearance of drug from the applied region. Therefore, to 

assess the hypothesis that drug loaded NLCs would offer longer retentivity in the skin and 

controlled drug release, the formulations were applied to intact skin and tape stripped skin.       

Figure 3.6, represents the amount of drug that was delivered into the skin from different 

formulations.  It was observed that significantly higher amounts of drug penetrated into the intact 

as well as the tape stripped skin from the gel without lipids as compared to the NLC loaded gels. 

However, for all the NLC loaded gels, no significant difference was observed for lidocaine 

penetration between the intact and tape stripped skin. This study clearly confirmed that the 

predominant release controlling step was the release of drug from the NLCs rather than viscosity 

of the gel or stratum corneum barrier. Therefore, it is plausible to use NLCs for formulation of 

drug delivery systems for regional prolonged delivery of drugs in the treatment of skin conditions 

in which the stratum corneum barrier is compromised completely or partially. This would enable 

regional therapy of wounds and injuries, more safely and effectively as compared to systemic 

therapy.  



www.manaraa.com

	

54	

Figure 3.6 Graphical representation of data obtained from drug retention studies (n=3).
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3.4 CONCLUSION 

This work opens up a new application for hot-melt extrusion techniques in the field of 

nanotechnology. Hot-melt extrusion technology along with probe sonication was successfully 

utilized to prepare nanostructured lipid carrier formulations. The various parameters for HME such 

as screw speed, screw design, barrel temperature and feeding rate could be varied as to obtain a 

desired product. Also, this process provides many advantages over the conventional methods of 

NLC preparation like shorter processing times, fewer unit operations, a continuous process, which 

makes the process more suitable for the industry. The permeation and mechanistic studies indicate 

that the formulated NLCs are expected to provide a prolonged delivery of lidocaine at the affected 

local site and confirmed the main release controlling step to be release of the drug from the 

nanocarriers. The formulation thus has potential for pain management in wounds and other 

injuries.  
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CHAPTER 4 

 

EFFECTS OF FORMULATION COMPOSITION ON THE CHARACTERISTICS OF 

MUCOADHESIVE FILMS PREPARED BY HOT-MELT EXTRUSION TECHNOLOGY
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4.1 INTRODUCTION 

 Over the last few years, the US Food and Drug Administration has encouraged the use of 

QbD principle in drug product development, manufacturing and regulation. The International 

Conference on Harmonisation (ICH) Quality Guidelines defines QbD as “a systematic approach 

to development that begins with predefined objectives and emphasizes product and process 

understanding and process control, based on sound science and quality risk management” (Food 

et al., 2011).  Prior knowledge, mechanistic models, risk analysis, design of experiment (DoE), 

data analysis and process analytical technology (PAT) are integral parts of QbD. Some of the goals 

for QbD include improving process capability, reducing product variability and defects, enhancing 

the product development and manufacturing efficiencies (Yu et al., 2014). While applying a DoE 

to a pharmaceutical system, the input factors are raw material attributes, process and formulation 

parameters and the output factors are the critical quality attributes (CQAs). Further more, the effect 

of process and formulation parameters on the product’s CQA are studied and a controlled design 

space is established (Patwardhan et al., 2015).  

 Response Surface Methodology (RSM) is a collection of statistical and mathematical 

techniques utilized for developing, improving and optimizing processes in which the response of 

interest is influenced by several variables and the aim is optimizing this response (Baş and Boyacı, 

2007). Using this technique, we can establish relationship between the response and the 

independent variables. The effect of independent variable, alone or in combination, on the process 
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can be studied. Reduced process variability, higher percentage yields and less treatment time are 

additional advantages of RSM (Pawar et al., 2016). 

 Mucoadhesive films are dosage forms that remain in intimate contact with the oral mucosa 

and release the drug for prolonged period either for local or systemic action. The release of drug 

can either be in the direction of oral mucosa or towards the oral cavity (Silva et al., 2015). The 

bioavailability of drugs that undergo extensive first pass metabolism after oral administration 

could be improved by formulating it as a mucoadhesive film. These dosage forms are particularly 

advantageous for pediatric and geriatric populations as they are easy to administer and danger of 

choking is minimal.  

 Currently, solvent casting (Vuddanda et al., 2017; Wang et al., 2016), printing (Buanz et 

al., 2015; Jamróz et al., 2017), compression (Garrido et al., 2016)  and hot-melt extrusion 

(Albarahmieh et al., 2016; Repka et al., 2005) are the various techniques used for preparation of 

films. Although, solvent casting is the most commonly used technique for film preparation, it has 

many disadvantages, like multistep process, batch to batch variations, air entrapment and removal 

of solvent from the product is time consuming and tedious (Pimparade et al., 2017). On the 

contrary, hot-melt extrusion (HME), is solvent free, adaptable to continuous manufacturing and an 

economical process. Hot-melt extrusion involves heating the mixture of polymer blend and drug 

in a barrel and forcing it through a die to obtain granules or films. The heat and the shear via the 

mixing elements ensure the mixing of all the components uniformly. However, very few scientific 

articles demonstrating the manufacturing of mucoadhesive oral films by HME have been reported. 

These published articles primarily focus on development and characterization of mucoadhesive 

films. However, interaction between formulation variables and the HME process needs to be 

studied, to help the formulation scientists in designing quality products. 
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 The aim of this study was to investigate the effects of formulation variables on the physico-

chemical and drug release characteristics of mucoadhesive films prepared by melt extrusion 

technique, using the DoE approach. Salbutamol sulphate, an anti-asthmatic drug (pKa 9.2) was 

incorporated in the mucoadhesive film, containing hydroxypropylcellulose (HPC) and 

hydroxypropylmethylcellulose (HPMC) as the film forming and drug retarding polymer, 

respectively. PEG 4500 was used as the plasticizer to aid the extrusion process.
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4.2 MATERIALS AND METHODS 

Materials 

Salbutamol sulphate was purchased from Shreeji Pharma International, Vadodara, India. Klucel™ 

hydroxypropylcellulose EF and Benecel™ hydroxypropylmethylcellulose K15M were received as 

gift samples from Ashland, USA. Polyethylene glycol (PEG) 4500 was purchased from 

Professional Compounding Centers of America, Inc (PCCA). Avicel® PH 101 was purchased 

from FMC Health and Nutrition, USA. All other chemicals used were of analytical grade. 

Methods 

Design of experiments 

The effect of formulation composition on the physico-chemical and drug release properties of films 

was studied using the response surface methodology (Type IV-Optimal). The experimental design 

and data analysis was carried out using a Design-Expert® software version 8. Fifteen runs with 

three independent factors, each with 3 levels, were designed using the DOE software. Table 4.1 

enlists the independent and dependent variables used for the study. The responses were fitted to a 

full quadratic model and p-values for each of the factors were used to determine their significance 

(p < 0.05) on the film characteristics. 

Analysis of variance (ANOVA) was conducted to test the significance (p < 0.05) of the model and 

factor coefficients (Table 4.5). Further, stepwise selection procedure was applied to eliminate
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insignificant predictors and improve the model. Simple effect analysis was conducted for the 

predictors of the model that had a significant interaction term.   

Table 4.1 Experimental factors and their levels for RSM study 

Independent factors Levels 

Low (-1) Medium (0) High (+1) 

HPC EF (x1) 40 60 80 

HPMC K15 (x2) 0 10 20 

PEG 4500 (x3) 20 30 40 

Dependent factors Torque (y1), stiffness (y2), swelling index (y3), 
disintegration time (y4), % drug release at 4 h 

(y5) 

 

Thermogravimetric analysis (TGA) 

The thermal stability of drug and all excipients was verified using a Perkin-Elmer Pyris 1 TGA 

instrument. Samples of 10-15 mg, each weighed in a platinum pan, were heated from 50-250°C at 

a linear heating rate of 20°C/min and nitrogen purge of 20 mL/min. Data was collected and 

analyzed using Pyris manager software. 

Differential scanning calorimetry (DSC) 

DSC studies were performed using TA Instruments, the Discovery series DSC 25 equipped with 

TRIOS software to assess the nature of drug in extruded films. Approximately 2-10 mg of pure 

drug, polymers and extruded formulations were hermetically sealed in Tzero aluminum pans and 

exposed to temperature range of 25-200°C at a ramp of 10°C/min and nitrogen gas at 50 mL/min. 

DSC studies were repeated after 6 months to check the stability and change in nature of drug in 

the formulations. 
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Preparation of mucoadhesive buccal films using HME 

Mucoadhesive buccal films were prepared using the co-rotating twin-screw extruder (16 mm Prism 

Euro Lab Thermo Fisher™ Scientific). The composition of each film formulation is as shown in 

Table 4.4. All the film formulations had 20% w/w salbutamol sulphate and 10% w/w Avicel PH 

101 (filler). The physical mixture of each respective formulation was sieved, and hand blended to 

acquire a homogenous mixture. Extrusion was carried out at 130°C with a feed rate of 0.58 kg/h 

and screw speed of 50 rpm. A standard screw design with three mixing zones was used. The die 

opening of 1.5 mm thickness was attached to obtain uniformly thick films. Torque observed during 

extrusion of each formulation was noted and considered as one of the response variables in DOE. 

Films of each formulation were collected in rolls, labeled and sealed in polyethylene bags.   

Thickness, weight and surface pH determination 

Thickness was determined using a Thermo Fischer™ Scientific 0-150 mm Digital Caliper and 

each film was measured at three, randomly selected positions and an average value was considered. 

For determining the weight and surface pH of each formulation, films were cut into 1cm×1cm 

pieces. Weight of each film piece was measured on an electronic balance. Each piece of the 

respective formulation was soaked in 3 mL solution of phosphate buffered saline (PBS) pH 7.4 ± 

0.1, in a petri dish. The glass electrode was brought in contact with the surface of the film, 

equilibrated for 1min to measure the surface pH using Mettler Toledo InLab® Micro pH probe 

(Reference Electrolyte 3 mol/L KCl). 
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Uniformity of drug content 

Three films of each formulation were randomly selected and cut into 1cm×1cm pieces and weighed 

using an electronic balance. Addition of 10 mL of water, followed by sonication for 15 min was 

performed to dissolve the drug.  Appropriate amount of sample was withdrawn and suitable 

dilutions were made. The amount of salbutamol sulphate present was determined using a HPLC-

UV method at wavelength of 276 nm. 

Swelling index (S.I.) and disintegration time (D.T.) 

The procedure followed for determining swelling index and disintegration time was same. Films 

were cut into 1cm×1cm pieces, weighed and placed in a petri dish containing 3 mL of PBS 

solution, pH 7.4 ± 0.1. S.I. studies for each sample were carried out up to 9h. At specific time 

points, excess PBS on the sides of the sample was carefully absorbed using tissue paper and 

reweighed. After noting the wet weight, 3 mL of fresh solvent was introduced into the petri dish 

and procedure was repeated for each reading. S.I. was calculated using the following equation: 

Swelling Index (%) =  !"#	%"&'(#	)	*+&'&,-.	/+0	%"&'(#
*+&'&,-.	/+0	%"&'(# 	1	100   

Simultaneously, each sample was visually checked periodically to note the D.T. Time when the 

film completely disintegrated was recorded. 

Physical characterization 

TA.XT2i Texture Analyzer Stable Micro Systems equipped with Texture Expert™ software was 

used to study stiffness and bioadhesion properties of each formulation.  
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Table 4.2 Test parameters for stiffness and bioadhesion studies. 

Test Stiffness Bioadhesion 

Fixture TA-108s5i Indexable Film 
Extensibility Rig 

A-MUC SMS Mucoadhesive Rig 

Probe TA-8 1/4” dia. Ball, SS TA-57R 7mm dia., 1” radius, SS 

Load 5kg 5kg 

Process 
Parameters 

Pre-test 
speed 

2.0 mm/s 

Test speed 1.0 mm/s 

Post-test 
speed 

10.0 mm/s 

Distance 10.0 mm 

Trigger 
Force 

10.0 g 

Break 
Sensitivity 

50.0 g 

 

Pre-test 
speed 

1.0 mm/s 

Test speed 0.1 mm/s 

Post-test 
speed 

0.5 mm/s 

Applied 
Force 

3.5 N 

Contact time 60.0s 
 

             

Stiffness studies were performed by placing an appropriate size of film of each formulation 

individually on the base plate and the screws are tightened such that the film does not move from 

its position. The stainless-steel ball probe was used to break through each film piece and the 

amount of work required to break it was recorded (Table 4.2).  

Evaluation of bioadhesive property of the films was done using rabbit buccal mucosa purchased 

from Pel-Freeze® Biologicals, Arkansas, USA, with the parameters as mentioned in Table 4.2. 

The tissue was thawed in PBS solution pH 7.4 ± 0.1, for 1h and placed on the lower base plate, 

fixed using heavy hold-down brass fixture. The films were wetted with PBS solution pH 7.4 ± 0.1, 

for 60s and mounted onto the probe using a cyanoacrylate adhesive. The work of adhesion and 

detachment force were considered to evaluate the bioadhesive property of films.  
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Scanning electron microscope (SEM) 

The surface morphology of the films was studied using SEM. The samples were placed on an 

aluminum base using an adhesive carbon tape. Hummer 6.2 Sputter Coater Ladd Research 

Industries, Williston, VT was used to sputter coat the samples with gold in a high vacuum 

evaporator. Images of these coated samples were captured using JEOL JSM-5600 SEM at an 

accelerating voltage of 10kV. 

In vitro drug release 

Drug release studies were carried out using Hanson SR8 Plus USP Apparatus 5 paddle over disk 

method with 500 mL of phosphate buffer pH 6.8, at speed of 50 rpm and at 37±0.5°C. The films 

of 1cm×1cm were cut, weighed and fixed on a watch glass using a cyanoacrylate adhesive, leaving 

the other side open. The films were positioned against the watch glass, such that the drug release 

is unidirectional and films were retained with the 17 mesh film retainer screen. 1 mL aliquots were 

withdrawn from the vessel at predetermined time intervals of 0, 1, 2, 4, 6, 8, 10 and 12h and 

replenished with equal volume of phosphate buffer pH 6.8. The samples were analyzed using a 

suitable HPLC-UV method. 

Analytical Method 

The salbutamol sulphate content in each formulation and analysis of drug release was performed 

using a Waters HPLC system with a Waters 2489 UV detector utilizing a Luna C18, 250×4.6mm 

(5µ) Phenomenex column. The mobile phase composition of 0.08 mol/L sodium dihydrogen 

phosphate solution (pH adjustment to 3.10 ± 0.05 using o-phosphoric acid) – methanol (85:15 v/v), 

flow rate of 1 mL/min, injection volume of 20 µL and detection wavelength of 276 nm was used 

for analysis.
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4.3 RESULTS AND DISCUSSION 

Thermal analysis 

During hot-melt extrusion, the drugs and polymers are heated to high temperature and it is 

necessary to ensure all the components are stable at the employed processing condition. TGA 

analysis (Figure 4.1) revealed all the ingredients were stable at 130°C (no weight change seen), 

which was the extrusion temperature for the formulation. DSC scan of pure salbutamol sulphate 

(melting point- 180°C) did not show a melting peak (Figure 4.2), indicating the amorphous form 

of drug. The amorphous form of drug was retained even after extrusion. However, pharmaceutical 

systems containing amorphous drugs have tendency to revert to the crystalline form as it is the 

thermodynamically favored form. But in this case, DSC thermogram (Figure 4.2) for samples 

stored for 6 months at 25°C, did not show any crystalline peak confirming the stability of the 

amorphous system for up to 6 months. 

Preparation of Films by Hot-Melt Extrusion  

Preliminary extrusion studies were carried out at 150°C, with this temperature a yellow 

discoloration of the drug was observed. Thus, it was necessary to reduce the extrusion temperature 

to prevent drug discoloration. Plasticizers are commonly utilized in HME, as they lower the glass 

transition temperature of polymers by weakening the intermolecular forces that hold the polymer 

chains together and thus improve the processability at lower temperature (Thumma et al., 2008). 

PEG 4500 was the plasticizer used in this study to extrude the films at 130°C. All the 15 
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formulations were successfully extruded at the processing conditions mentioned above and no drug 

discoloration was observed. 

 

 

Figure 4.1 Thermogravimetric analysis for the formulation ingredients 
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Figure 4.2 DSC thermogram for the film ingredients and extruded films (F-1 T-0 and F-1 T-6M 

refers to film formulation at time 0 and 6 months, respectively) 

 

Characterization of films 

The weight and thickness of 1cm x 1cm films was found to be in the range of 113.63 - 132.50 mg 

and 0.90 – 1.11 mm, respectively (Table 4.3). Surface pH was in the range of 7.06 – 7.32. The 

drug content was found to vary from 91.33% to 98.53% (Table 4.3). In addition, the standard 

deviation for drug content for each formulation was less than 4%, thus demonstrating uniformity 

of drug content. 
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Table 4.3 Characterization of extruded films 

Formulation 
no. 

Weight (mg) Thickness (mm) Surface pH Drug Content 
(%) 

F-1 126.60 ± 1.47 1.03 ± 0.01 7.26 ± 0.11 94.04 ± 0.51 

F-2 131.53 ± 0.96 1.04 ± 0.02 7.21 ± 0.06 93.66 ± 0.54 

F-3 128.87 ± 1.20 1.06 ± 0.03 7.12 ± 0.07 94.05 ± 1.74 

F-4 128.87 ± 0.86 1.08 ± 0.03 7.24 ± 0.13 91.33 ± 2.45 

F-5 127.47 ± 0.85 1.06 ± 0.05 7.22 ± 0.09 91.36 ± 1.02 

F-6 129.23 ± 0.45 0.92 ± 0.05 7.29 ± 0.10 94.51 ± 0.97 

F-7 127.13 ± 0.59 1.00 ± 0.05 7.18 ± 0.14 94.32 ± 2.27 

F-8 127.47 ± 0.60 1.06 ± 0.03 7.23 ± 0.13 93.25 ± 0.63 

F-9 132.50 ± 1.28 1.11 ± 0.03 7.18 ± 0.10 98.53 ± 3.66 

F-10 128.20 ± 1.81 1.06 ± 0.04 7.16 ± 0.07 93.43 ± 3.2 

F-11 121.17 ± 1.15 1.10 ± 0.03 7.25 ± 0.19 94.64 ± 1.77 

F-12 114.00 ± 0.35 0.97 ± 0.02 7.32 ± 0.11 93.4 ± 1.53 

F-13 113.63 ± 0.78 0.90 ± 0.04 7.09 ± 0.07 93.06 ± 0.73 

F-14 127.93 ± 0.32 1.07 ± 0.03 7.06 ± 0.09 92.33 ± 1.22 

F-15 126.67 ± 1.62 1.10 ± 0.01 7.28 ± 0.10 92.62 ± 0.95 

 

Scanning electron microscopy 

SEM was performed to study the surface morphology of the extruded films. A variation in the 

surface characteristics as shown in Figure 4.3, was observed for the films with varying 

composition. F-6 and F-7 formulation had same composition except the concentration of film 

forming polymer (HPC). Films containing higher amounts of HPC (F-6) were found to have a 

smooth surface, while those containing lower amount of HPC (F-7) were found to be porous. No 
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crystals of salbutamol sulphate were observed, supporting the DSC finding of amorphous drug in 

the formulation. 

 

        (a)          (b) 

Figure 4.3 Surface morphology analyzed using SEM. a) Formulation F-6. b) Formulation F-7    

Bioadhesion studies 

Bioadhesion can be defined as the ability of a biological substrate or synthetic material to stick to 

the human epidermis or a mucous membrane (Repka and McGinity, 2001). Bioadhesion is a 

complex process and various mechanisms like hydrogen bonding, polymer chain inter-penetration, 

surface energy and contact angle measurement and swelling rate of the polymer have been studied 

and proposed for bioadhesion. In this study, peak force and work of adhesion were evaluated to 

study the bioadhesion of films. Peak force (adhesive strength) is the maximum force required to 

detach the film from the biological substrate, while work of adhesion is the area under the curve 

(plot of force versus time). Peak force and work of adhesion were found to be in the range of 0.09 

- 0.28 N and 0.32 - 0.71 N-s, respectively (Figure 4.4). Hydration of polymers, followed by 

physical entanglement and interpenetration of the polymer chains with the mucin and hydrogen 
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bonding have been reported as the mechanisms for bioadhesion of HPMC and HPC (Repka et al., 

2005). This study demonstrated the low to moderate adhesive potential of the cellulose polymers 

used. 

 

Figure 4.4 Bioadhesion studies performed for the film formulations 
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Table 4.4 The design of RSM: Factors and Responses 

Run Factor 
x1: 

HPC-
EF (g) 

Factor 
x2: 

HPMC 
K-15 (g) 

Factor 
x3: PEG 

4500 

(g) 

Response 
y1: 

Torque 

(%) 

Response 
y2: 

Stiffness 
(g/s) 

Response 
y3: 

Swelling 
index 

Response y4: 
Disintegration 

time (min) 

Response y5: 
% drug 
release 

F-1 80 20 40 23 1024 27.76 210.67 69.21 

F-2 80 10 40 20 616 23 130 80.56 

F-3 60 10 40 17 746 19.36 149.67 80.23 

F-4 40 20 20 32 1782 75.48 540 71.5 

F-5 60 0 30 18 1309 0 131.33 86.28 

F-6 80 10 30 28 856 58.49 75 73.2 

F-7 60 10 30 19 948 31.58 135 81.55 

F-8 40 10 20 25 1301 40.33 190 75.4 

F-9 40 0 40 8 1036 0 136 72.31 

F-10 60 20 20 29 1094 59.67 380.33 69.36 

F-11 60 0 30 17 851 0 135.33 89.47 

F-12 80 0 40 17 1295 0 130.33 84.64 

F-13 80 0 20 32 1132 0 152 83 

F-14 40 20 30 18 1262 105.35 290 70.54 

F-15 60 10 30 17 782 46.37 132.67 71.64 
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Table 4.5 Analysis of variance (ANOVA) for all responses 

 

Note: Stepwise selection procedure was applied to improve the model  

 

Source 

 

 

Torque Stiffness Swelling index Disintegration time % drug release 

f-value p-value f-value p-value f-value p-value f-value p-value f-value p-value 

Model 24.29 <0.0001 5.45 0.0139 22.33 0.0001 37.28 <0.0001 18.49 0.0009 

x1 22.84 0.0006 3.72 0.0859 4.96 0.0565 20.95 0.0026 - - 

x2 10.06 0.0089 0.48 0.5071 81.03 <0.0001 84.75 <0.0001 18.49 0.0009 

           

x3 50.34 <0.0001 5.12 0.0499 0.16 0.6960 2.64 0.1484 - - 

x1x2 - - - - 4.77 0.0605 8.51 0.0224 - - 

x1x3 - - 5.71 0.0406 - - - - - - 

x2x3 - - - - - - - - - - 

x1
2 - - - - 5.21 0.0519 8.68 0.0215 - - 

x2
2 - - 10.26 0.0108 - - 36.34 0.0005 - - 

x3
2 - - - - 14.57 0.0051 27.14 0.0012 - - 

78
	



www.manaraa.com

	

79	

Torque 

Parameters like screw speed and throughput can be set individually, while torque is a resulting 

value which represents the resistance of the material to move forward in the barrel. In other words, 

it indicates how much energy is conveyed from motor to the screw to process a formulation.  

Torque is one of the most relevant practical response as it measures how the process reacts to a 

given input (Lowinger 2011). Generally, polymers that are difficult to extrude or the ones that have 

very high glass transition temperature show higher torque values during extrusion. Thus 

plasticizers are added to the polymer blend to improve the processability of such mixtures, either 

by lowering the processing temperature or by decreasing the melt viscosity. For this study, torque 

values during extrusion were in the range of 8-32%. The equation representing the effect of 

independent variables on torque is shown below: 

!" = 25.49 + 0.23," + 0.30,- − 0.70,0 

The positive coefficient for HPC EF and HPMC K15 indicates that an increase in the concentration 

of these polymers results in higher torque values (Figure 4.5). However, an increase in the 

concentration of PEG 4500 results in lower torque values (Figure 4.6), this can be attributed to the 

plasticizing effect provided by PEG. Thus our hypothesis of reduction in torque with an increase 

in the amount of plasticizer was confirmed in this study. Similar effects of plasticizer on torque 

values have been observed in few other studies (Desai et al., 2017; Grymonpré et al., 2017).  
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Figure 4.5 Response surface 3D plot showing effect of different levels of HPC EF (g) and HPMC 

K15M (g) on torque values. 

 

Figure 4.6 The effect of PEG 4500 concentration (g) on torque values 
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Stiffness 

Mechanical properties are important quality attributes of films and they affect the quality and 

elegance of the product. Mechanical properties like stiffness need to be considered while 

optimizing a film formulation, so as to ensure it can withstand the stress during transport and 

patient handling. Different factors like film forming agent, type and amount of plasticizer, type of 

manufacturing process and type and amount of API have an impact on the mechanical properties 

of films (Preis et al., 2014). The stiffness of extruded films was in the range of 616 - 1782 g/s. The 

equation below shows the effect of independent variables on stiffness of films. 

!- = 3860.39 − 36.44," − 68.15,- − 75.11,0 + 3.16,-- + 0.99,". ,0 

 

Figure 4.7 The effect of PEG 4500 and HPC EF concentration (g) on stiffness of films 

It was observed that amount of plasticizer had a significant influence on stiffness of films and this 

effect was qualified by the amount of film forming polymer. At a constant amount of HPC EF      
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(40 g and 60 g), an increase in the amount of PEG 4500 caused a significant decrease in the 

stiffness of the films (Figure 4.7). However, at HPC level of 80 g, plasticizer did not have a 

significant effect on stiffness. Thus, the plasticizing effect by PEG 4500 negatively influenced the 

mechanical properties of the film at HPC concentration of 40 g and 60 g. In a study conducted by 

Visser et al., on orally disintegrating films, higher percentage of glycerol (plasticizer) 

corresponded to decreased tensile strength, further supporting our results (Visser et al., 2015). 

Another finding from this study was that as the concentration of HPMC increased from low to 

medium level, there was a decrease in stiffness, however, a further increase in the concentration 

of HPMC (from 10 g to 20 g) resulted in an increase in stiffness values. It might be possible that 

at low level of HPMC, it is the other factors that have a pronounced effect on stiffness, but as the 

concentration of HPMC increase, its influence on stiffness is observed. However, further 

investigation is necessary to find out the exact mechanism for such a trend. Similar behaviour was 

observed for HPMC E5 films that were plastcized by PEG 4000, and prepared using sraying 

technique, in a study conducted by Heinämäki et al. 
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Figure 4.8 Response surface 3D plot showing the interactive effect of concentration of HPC EF 

(g) and PEG 4500 (g) on stiffness of films. 

Swelling index 

Swelling index represents the water retaining/holding capacity of polymers (Sharma et al., 2016). 

Mucoadhesive polymers undergo hydration to form a macromolecular mesh, leading to mobility 

in the polymer chains and enhancing the interpenetration between polymer and mucin (Costa et 

al., 2014). A progressive change from the glassy to the rubbery state leads to the swelling process. 

Determining the swelling index for the formulation is thus a good indicator of the adhesion 

properties of films. The equation below shows the effect of independent variables on swelling 

index of films. 

!0 = −74.97 − 4.10," + 6.42,- + 13.59,0 + 0.035,"- − 0.229,0- − 0.053,". ,- 

A significant interaction between the concentration of HPMC K15M and HPC EF was seen for 

swelling index (Figure 4.9). Very high swelling index was seen with high amounts of HPMC 
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K15M and at low levels of HPC EF, as shown in Figure 4.9. HPMC K15M and HPC EF have 

average molecular weight of 575,000 Da and 80,000 Da, respectively. The high molecular weight 

HPMC polymers are hydrophilic swellable polymers that form a viscous gel layer upon hydration 

(Conti et al., 2007). Thus an increase in the amount of such polymer in a film, leads to an increase 

in the swelling behavior as seen in Figure 4.9. The dissolution of HPC polymers occurs via a 

swelling and erosion driven mechanism, which is dependent upon chain length. The lower 

molecular weight grades like Klucel EF undergo a faster erosion and show a lower swelling index 

(Mohammed et al., 2012), thereby confirming our results. Interestingly, it was observed that 

swelling index increased as the PEG concentration increased from low to medium levels but 

further increase in concentration to high levels, reduced the swelling index.   

 

Figure 4.9 Response surface 3D plot showing the interactive effect of concentration of HPMC 

K15M (g) and HPC EF (g) on swelling index. 
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Disintegration time 

Disintegration time of mucoadhesive films has been co-related with their swelling index because 

swelling of films is followed by eventual disintegration (Garsuch and Breitkreutz, 2009). The 

disintegration time was found to vary from 75 min to 540 min. Interactions between the 

independent variables (HPMC K15M and HPC EF) as seen for swelling index were observed for 

disintegration time (Figure 4.10). Film formulation with low level of HPC EF (40 g) and PEG 

4500 (20 g), and high level of HPMC K15 demonstrated the longest disintegration time because 

HPC EF and PEG 4500 are water soluble and erode quickly while, HPMC K15M is a swellable 

polymer undergoing slow erosion. The equation below demonstrates the effect of independent 

variables on disintegration time. 

ln !6 = 6.5 + 0.06," + 0.01,- − 0.22,0 − 0.0005,-- + 0.003,0- − 0.0008,",- 

 

Figure 4.10 Response surface 3D plot showing the interactive effect of concentration of              

HPC EF (g) and HPMC K15M (g) on the disintegration time. 
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Drug release (Dissolution) 

At 4 h time point, drug release from the films varied from 69.21% to 89.47% (Figure 4.12). Drug 

release from the polymeric films was found to be significantly affected by the concentration of 

HPMC K15M in the formulation (Figure 4.11). The equation below represents the effect of HPMC 

on the % drug release. 

!7 = 83.30 − 0.65,- 

The negative coefficient for HPMC indicates that as the amount of this polymer is increased, the 

% drug release decreases significantly.  

Higuchi model was not suitable for this study because few of the assumptions of this model as 

mentioned below, did not apply to this investigation (Siepmann and Peppas, 2012). 

1) The initial drug concentration in the system is much higher than the drug solubility.  

2) Drug diffusion is one-dimensional, making edge effects negligible.  

3) Swelling or dissolution of the polymer carrier can be neglected. 

 Korsmeyer-Peppas model was used to analyze the in vitro drug release mechanism. The release 

exponent (n) for the film formulations ranged from 0.6675 to 0.9297 (Table 4.6), indicating 

anomalous drug transport as the drug release mechanism(Avachat et al., 2013; Costa and Sousa 

Lobo, 2001). Thus diffusion as well as erosion were responsible for drug release. HPC EF 

undergoes dissolution by the mechanism of erosion and diffusion, while HPMC K15M swells and 

dissolves, thus explaining to some extent the reason for anomalous drug transport.  
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Table 4.6 R2 and n values for Korsmeyer-Peppas model 

Formulation R² n 

F-1 0.98615 0.8831 

F-2 0.98814 0.8188 

F-3 0.98593 0.7935 

F-4 0.98207 0.8174 

F-5 0.97198 0.8255 

F-6 0.97987 0.8147 

F-7 0.98401 0.7852 

F-8 0.97633 0.7434 

F-9 0.98508 0.8485 

F-10 0.99352 0.6675 

F-11 0.9466 0.8648 

F-12 0.97899 0.8129 

F-13 0.97994 0.8605 

F-14 0.97904 0.8827 

F-15 0.97527 0.9297 
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Figure 4.11 The effect of concentration of HPMC (g) on percent drug release of mucoadhesive 

films. 

 

Figure 4.12 Few extruded films with significant difference in the drug release profile.
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4.4 CONCLUSION 

Films were successfully extruded using melt extrusion technique. Response surface methodology 

provided a clear picture of impact of formulation composition on the physico-chemical and drug 

release properties of films. It was observed that HPC EF, HPMC K15M and PEG  4500 all 

influenced one or the other film characteristics either alone or in combination. It is of utmost 

importance to understand how interactions between factors affect a specific response. It is only 

after such analysis that an optimized system with desired properties could be formulated. Thus, 

this study provides a valuable insight for selection of formulation composition for hot melt 

extruded mucoadhesive films. The relationship between formulation composition and product 

performance was elucidated, thus demonstrating the use of melt extrusion technology as a viable 

approach for preparation of films with desired quality attributes. 
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